Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
87 tokens/sec
Gemini 2.5 Pro Premium
36 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

A4O: All Trigger for One sample (2501.07192v1)

Published 13 Jan 2025 in cs.CR and cs.CV

Abstract: Backdoor attacks have become a critical threat to deep neural networks (DNNs), drawing many research interests. However, most of the studied attacks employ a single type of trigger. Consequently, proposed backdoor defenders often rely on the assumption that triggers would appear in a unified way. In this paper, we show that this naive assumption can create a loophole, allowing more sophisticated backdoor attacks to bypass. We design a novel backdoor attack mechanism that incorporates multiple types of backdoor triggers, focusing on stealthiness and effectiveness. Our journey begins with the intriguing observation that the performance of a backdoor attack in deep learning models, as well as its detectability and removability, are all proportional to the magnitude of the trigger. Based on this correlation, we propose reducing the magnitude of each trigger type and combining them to achieve a strong backdoor relying on the combined trigger while still staying safely under the radar of defenders. Extensive experiments on three standard datasets demonstrate that our method can achieve high attack success rates (ASRs) while consistently bypassing state-of-the-art defenses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.