Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Rethinking Knowledge in Distillation: An In-context Sample Retrieval Perspective (2501.07040v1)

Published 13 Jan 2025 in cs.CV

Abstract: Conventional knowledge distillation (KD) approaches are designed for the student model to predict similar output as the teacher model for each sample. Unfortunately, the relationship across samples with same class is often neglected. In this paper, we explore to redefine the knowledge in distillation, capturing the relationship between each sample and its corresponding in-context samples (a group of similar samples with the same or different classes), and perform KD from an in-context sample retrieval perspective. As KD is a type of learned label smoothing regularization (LSR), we first conduct a theoretical analysis showing that the teacher's knowledge from the in-context samples is a crucial contributor to regularize the student training with the corresponding samples. Buttressed by the analysis, we propose a novel in-context knowledge distillation (IC-KD) framework that shows its superiority across diverse KD paradigms (offline, online, and teacher-free KD). Firstly, we construct a feature memory bank from the teacher model and retrieve in-context samples for each corresponding sample through retrieval-based learning. We then introduce Positive In-Context Distillation (PICD) to reduce the discrepancy between a sample from the student and the aggregated in-context samples with the same class from the teacher in the logit space. Moreover, Negative In-Context Distillation (NICD) is introduced to separate a sample from the student and the in-context samples with different classes from the teacher in the logit space. Extensive experiments demonstrate that IC-KD is effective across various types of KD, and consistently achieves state-of-the-art performance on CIFAR-100 and ImageNet datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube