Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing the Role of Context in Forecasting with Large Language Models (2501.06496v1)

Published 11 Jan 2025 in cs.CL and cs.IR

Abstract: This study evaluates the forecasting performance of recent LLMs on binary forecasting questions. We first introduce a novel dataset of over 600 binary forecasting questions, augmented with related news articles and their concise question-related summaries. We then explore the impact of input prompts with varying level of context on forecasting performance. The results indicate that incorporating news articles significantly improves performance, while using few-shot examples leads to a decline in accuracy. We find that larger models consistently outperform smaller models, highlighting the potential of LLMs in enhancing automated forecasting.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.