ZipEnhancer: Dual-Path Down-Up Sampling-based Zipformer for Monaural Speech Enhancement
Abstract: In contrast to other sequence tasks modeling hidden layer features with three axes, Dual-Path time and time-frequency domain speech enhancement models are effective and have low parameters but are computationally demanding due to their hidden layer features with four axes. We propose ZipEnhancer, which is Dual-Path Down-Up Sampling-based Zipformer for Monaural Speech Enhancement, incorporating time and frequency domain Down-Up sampling to reduce computational costs. We introduce the ZipformerBlock as the core block and propose the design of the Dual-Path DownSampleStacks that symmetrically scale down and scale up. Also, we introduce the ScaleAdam optimizer and Eden learning rate scheduler to improve the performance further. Our model achieves new state-of-the-art results on the DNS 2020 Challenge and Voicebank+DEMAND datasets, with a perceptual evaluation of speech quality (PESQ) of 3.69 and 3.63, using 2.04M parameters and 62.41G FLOPS, outperforming other methods with similar complexity levels.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.