Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Best Loss Function for DNN-Based Low-latency Speech Enhancement with Temporal Convolutional Networks (2005.11611v3)

Published 23 May 2020 in eess.AS and cs.SD

Abstract: Recently, deep neural networks (DNNs) have been successfully used for speech enhancement, and DNN-based speech enhancement is becoming an attractive research area. While time-frequency masking based on the short-time Fourier transform (STFT) has been widely used for DNN-based speech enhancement over the last years, time domain methods such as the time-domain audio separation network (TasNet) have also been proposed. The most suitable method depends on the scale of the dataset and the type of task. In this paper, we explore the best speech enhancement algorithm on two different datasets. We propose a STFT-based method and a loss function using problem-agnostic speech encoder (PASE) features to improve subjective quality for the smaller dataset. Our proposed methods are effective on the Voice Bank + DEMAND dataset and compare favorably to other state-of-the-art methods. We also implement a low-latency version of TasNet, which we submitted to the DNS Challenge and made public by open-sourcing it. Our model achieves excellent performance on the DNS Challenge dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuichiro Koyama (18 papers)
  2. Tyler Vuong (7 papers)
  3. Stefan Uhlich (32 papers)
  4. Bhiksha Raj (180 papers)
Citations (40)