Papers
Topics
Authors
Recent
2000 character limit reached

Multi-SpaCE: Multi-Objective Subsequence-based Sparse Counterfactual Explanations for Multivariate Time Series Classification (2501.04009v2)

Published 14 Dec 2024 in cs.NE, cs.LG, and stat.ML

Abstract: Deep Learning systems excel in complex tasks but often lack transparency, limiting their use in critical applications. Counterfactual explanations, a core tool within eXplainable Artificial Intelligence (XAI), offer insights into model decisions by identifying minimal changes to an input to alter its predicted outcome. However, existing methods for time series data are limited by univariate assumptions, rigid constraints on modifications, or lack of validity guarantees. This paper introduces Multi-SpaCE, a multi-objective counterfactual explanation method for multivariate time series. Using non-dominated ranking genetic algorithm II (NSGA-II), Multi-SpaCE balances proximity, sparsity, plausibility, and contiguity. Unlike most methods, it ensures perfect validity, supports multivariate data and provides a Pareto front of solutions, enabling flexibility to different end-user needs. Comprehensive experiments in diverse datasets demonstrate the ability of Multi-SpaCE to consistently achieve perfect validity and deliver superior performance compared to existing methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.