Papers
Topics
Authors
Recent
2000 character limit reached

ICPC: In-context Prompt Compression with Faster Inference (2501.01625v1)

Published 3 Jan 2025 in cs.CL and cs.AI

Abstract: Despite the recent success of LLMs, it remains challenging to feed LLMs with long prompts due to the fixed size of LLM inputs. As a remedy, prompt compression becomes a promising solution by removing redundant tokens in the prompt. However, using LLM in the existing works requires additional computation resources and leads to memory overheads. To address it, we propose ICPC (In-context Prompt Compression), a novel and scalable prompt compression method that adaptively reduces the prompt length. The key idea of ICPC is to calculate the probability of each word appearing in the prompt using encoders and calculate information carried by each word through the information function, which effectively reduces the information loss during prompt compression and increases the speed of compression. Empirically, we demonstrate that ICPC can effectively compress long texts of different categories and thus achieve better performance and speed on different types of NLP tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.