Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimal design of frame structures with mixed categorical and continuous design variables using the Gumbel-Softmax method (2501.00258v1)

Published 31 Dec 2024 in cs.CE and math.OC

Abstract: In optimizing real-world structures, due to fabrication or budgetary restraints, the design variables may be restricted to a set of standard engineering choices. Such variables, commonly called categorical variables, are discrete and unordered in essence, precluding the utilization of gradient-based optimizers for the problems containing them. In this paper, incorporating the Gumbel-Softmax (GSM) method, we propose a new gradient-based optimizer for handling such variables in the optimal design of large-scale frame structures. The GSM method provides a means to draw differentiable samples from categorical distributions, thereby enabling sensitivity analysis for the variables generated from such distributions. The sensitivity information can greatly reduce the computational cost of traversing high-dimensional and discrete design spaces in comparison to employing gradient-free optimization methods. In addition, since the developed optimizer is gradient-based, it can naturally handle the simultaneous optimization of categorical and continuous design variables. Through three numerical case studies, different aspects of the proposed optimizer are studied and its advantages over population-based optimizers, specifically a genetic algorithm, are demonstrated.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube