Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables (2007.04446v1)

Published 8 Jul 2020 in stat.ML, cs.LG, stat.AP, and stat.CO

Abstract: Gradient boosting methods based on Structured Categorical Decision Trees (SCDT) have been demonstrated to outperform numerical and one-hot-encodings on problems where the categorical variable has a known underlying structure. However, the enumeration procedure in the SCDT is infeasible except for categorical variables with low or moderate cardinality. We propose and implement two methods to overcome the computational obstacles and efficiently perform Gradient Boosting on complex structured categorical variables. The resulting package, called StructureBoost, is shown to outperform established packages such as CatBoost and LightGBM on problems with categorical predictors that contain sophisticated structure. Moreover, we demonstrate that StructureBoost can make accurate predictions on unseen categorical values due to its knowledge of the underlying structure.

Citations (4)

Summary

We haven't generated a summary for this paper yet.