Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diminishing Return of Value Expansion Methods (2412.20537v1)

Published 29 Dec 2024 in cs.LG

Abstract: Model-based reinforcement learning aims to increase sample efficiency, but the accuracy of dynamics models and the resulting compounding errors are often seen as key limitations. This paper empirically investigates potential sample efficiency gains from improved dynamics models in model-based value expansion methods. Our study reveals two key findings when using oracle dynamics models to eliminate compounding errors. First, longer rollout horizons enhance sample efficiency, but the improvements quickly diminish with each additional expansion step. Second, increased model accuracy only marginally improves sample efficiency compared to learned models with identical horizons. These diminishing returns in sample efficiency are particularly noteworthy when compared to model-free value expansion methods. These model-free algorithms achieve comparable performance without the computational overhead. Our results suggest that the limitation of model-based value expansion methods cannot be attributed to model accuracy. Although higher accuracy is beneficial, even perfect models do not provide unrivaled sample efficiency. Therefore, the bottleneck exists elsewhere. These results challenge the common assumption that model accuracy is the primary constraint in model-based reinforcement learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.