Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DPBridge: Latent Diffusion Bridge for Dense Prediction (2412.20506v3)

Published 29 Dec 2024 in cs.CV

Abstract: Diffusion models demonstrate remarkable capabilities in capturing complex data distributions and have achieved compelling results in many generative tasks. While they have recently been extended to dense prediction tasks such as depth estimation and surface normal prediction, their full potential in this area remains under-explored. In dense prediction settings, target signal maps and input images are pixel-wise aligned. This makes conventional noise-to-data generation paradigm inefficient, as input images can serve as more informative prior compared to pure noise. Diffusion bridge models, which support data-to-data generation between two general data distributions, offer a promising alternative, but they typically fail to exploit the rich visual priors embedded in large pretrained foundation models. To address these limitations, we integrate diffusion bridge formulation with structured visual priors and introduce DPBridge, the first latent diffusion bridge framework for dense prediction tasks. Our method presents three key contributions: (1) a tractable reverse transition kernel for diffusion bridge process, enabling maximum likelihood training scheme for better compatibility with pretrained backbones; (2) a distribution-aligned normalization technique to mitigate the discrepancies between the bridge and standard diffusion processes; and (3) an auxiliary image consistency loss to preserve fine-grained details. Experiments across extensive benchmarks validate that our method consistently achieves superior performance, demonstrating its effectiveness and generalization capability under different scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube