Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FFCG: Effective and Fast Family Column Generation for Solving Large-Scale Linear Program (2412.19066v1)

Published 26 Dec 2024 in cs.LG and math.OC

Abstract: Column Generation (CG) is an effective and iterative algorithm to solve large-scale linear programs (LP). During each CG iteration, new columns are added to improve the solution of the LP. Typically, CG greedily selects one column with the most negative reduced cost, which can be improved by adding more columns at once. However, selecting all columns with negative reduced costs would lead to the addition of redundant columns that do not improve the objective value. Therefore, selecting the appropriate columns to add is still an open problem and previous machine-learning-based approaches for CG only add a constant quantity of columns per iteration due to the state-space explosion problem. To address this, we propose Fast Family Column Generation (FFCG) -- a novel reinforcement-learning-based CG that selects a variable number of columns as needed in an iteration. Specifically, we formulate the column selection problem in CG as an MDP and design a reward metric that balances both the convergence speed and the number of redundant columns. In our experiments, FFCG converges faster on the common benchmarks and reduces the number of CG iterations by 77.1% for Cutting Stock Problem (CSP) and 84.8% for Vehicle Routing Problem with Time Windows (VRPTW), and a 71.4% reduction in computing time for CSP and 84.0% for VRPTW on average compared to several state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube