Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Column Generation by a Machine-Learning-Based Pricing Heuristic for Graph Coloring (2112.04906v3)

Published 8 Dec 2021 in math.OC, cs.AI, and cs.LG

Abstract: Column Generation (CG) is an effective method for solving large-scale optimization problems. CG starts by solving a sub-problem with a subset of columns (i.e., variables) and gradually includes new columns that can improve the solution of the current subproblem. The new columns are generated as needed by repeatedly solving a pricing problem, which is often NP-hard and is a bottleneck of the CG approach. To tackle this, we propose a Machine-Learning-based Pricing Heuristic (MLPH)that can generate many high-quality columns efficiently. In each iteration of CG, our MLPH leverages an ML model to predict the optimal solution of the pricing problem, which is then used to guide a sampling method to efficiently generate multiple high-quality columns. Using the graph coloring problem, we empirically show that MLPH significantly enhancesCG as compared to six state-of-the-art methods, and the improvement in CG can lead to substantially better performance of the branch-and-price exact method.

Citations (25)

Summary

We haven't generated a summary for this paper yet.