Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Explainability in Neural Networks for Natural Language Processing Tasks (2412.18036v2)

Published 23 Dec 2024 in cs.CL and cs.AI

Abstract: Neural networks are widely regarded as black-box models, creating significant challenges in understanding their inner workings, especially in NLP applications. To address this opacity, model explanation techniques like Local Interpretable Model-Agnostic Explanations (LIME) have emerged as essential tools for providing insights into the behavior of these complex systems. This study leverages LIME to interpret a multi-layer perceptron (MLP) neural network trained on a text classification task. By analyzing the contribution of individual features to model predictions, the LIME approach enhances interpretability and supports informed decision-making. Despite its effectiveness in offering localized explanations, LIME has limitations in capturing global patterns and feature interactions. This research highlights the strengths and shortcomings of LIME and proposes directions for future work to achieve more comprehensive interpretability in neural NLP models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: