Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Multi-Agent Orchestration and Retrieval for Multi-Source Question-Answer Systems using Large Language Models (2412.17964v1)

Published 23 Dec 2024 in cs.AI

Abstract: We propose a methodology that combines several advanced techniques in LLM retrieval to support the development of robust, multi-source question-answer systems. This methodology is designed to integrate information from diverse data sources, including unstructured documents (PDFs) and structured databases, through a coordinated multi-agent orchestration and dynamic retrieval approach. Our methodology leverages specialized agents-such as SQL agents, Retrieval-Augmented Generation (RAG) agents, and router agents - that dynamically select the most appropriate retrieval strategy based on the nature of each query. To further improve accuracy and contextual relevance, we employ dynamic prompt engineering, which adapts in real time to query-specific contexts. The methodology's effectiveness is demonstrated within the domain of Contract Management, where complex queries often require seamless interaction between unstructured and structured data. Our results indicate that this approach enhances response accuracy and relevance, offering a versatile and scalable framework for developing question-answer systems that can operate across various domains and data sources.

Citations (1)

Summary

We haven't generated a summary for this paper yet.