Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Current Challenges of Software Engineering in the Era of Large Language Models (2412.14554v2)

Published 19 Dec 2024 in cs.SE

Abstract: With the advent of LLMs in the AI area, the field of software engineering (SE) has also witnessed a paradigm shift. These models, by leveraging the power of deep learning and massive amounts of data, have demonstrated an unprecedented capacity to understand, generate, and operate programming languages. They can assist developers in completing a broad spectrum of software development activities, encompassing software design, automated programming, and maintenance, which potentially reduces huge human efforts. Integrating LLMs within the SE landscape (LLM4SE) has become a burgeoning trend, necessitating exploring this emergent landscape's challenges and opportunities. The paper aims at revisiting the software development life cycle (SDLC) under LLMs, and highlighting challenges and opportunities of the new paradigm. The paper first summarizes the overall process of LLM4SE, and then elaborates on the current challenges based on a through discussion. The discussion was held among more than 20 participants from academia and industry, specializing in fields such as software engineering and artificial intelligence. Specifically, we achieve 26 key challenges from seven aspects, including software requirement & design, coding assistance, testing code generation, code review, code maintenance, software vulnerability management, and data, training, and evaluation. We hope the achieved challenges would benefit future research in the LLM4SE field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.