Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Emotional Body Expressions via Large Language Models (2412.12581v2)

Published 17 Dec 2024 in cs.HC

Abstract: Emotion recognition based on body movements is vital in human-computer interaction. However, existing emotion recognition methods predominantly focus on enhancing classification accuracy, often neglecting the provision of textual explanations to justify their classifications. In this paper, we propose an Emotion-Action Interpreter powered by LLM (EAI-LLM), which not only recognizes emotions but also generates textual explanations by treating 3D body movement data as unique input tokens within LLMs. Specifically, we propose a multi-granularity skeleton tokenizer designed for LLMs, which separately extracts spatio-temporal tokens and semantic tokens from the skeleton data. This approach allows LLMs to generate more nuanced classification descriptions while maintaining robust classification performance. Furthermore, we treat the skeleton sequence as a specific language and propose a unified skeleton token module. This module leverages the extensive background knowledge and language processing capabilities of LLMs to address the challenges of joint training on heterogeneous datasets, thereby significantly enhancing recognition accuracy on individual datasets. Experimental results demonstrate that our model achieves recognition accuracy comparable to existing methods. More importantly, with the support of background knowledge from LLMs, our model can generate detailed emotion descriptions based on classification results, even when trained on a limited amount of labeled skeleton data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.