Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Panacea: Novel DNN Accelerator using Accuracy-Preserving Asymmetric Quantization and Energy-Saving Bit-Slice Sparsity (2412.10059v1)

Published 13 Dec 2024 in cs.AR and cs.AI

Abstract: Low bit-precisions and their bit-slice sparsity have recently been studied to accelerate general matrix-multiplications (GEMM) during large-scale deep neural network (DNN) inferences. While the conventional symmetric quantization facilitates low-resolution processing with bit-slice sparsity for both weight and activation, its accuracy loss caused by the activation's asymmetric distributions cannot be acceptable, especially for large-scale DNNs. In efforts to mitigate this accuracy loss, recent studies have actively utilized asymmetric quantization for activations without requiring additional operations. However, the cutting-edge asymmetric quantization produces numerous nonzero slices that cannot be compressed and skipped by recent bit-slice GEMM accelerators, naturally consuming more processing energy to handle the quantized DNN models. To simultaneously achieve high accuracy and hardware efficiency for large-scale DNN inferences, this paper proposes an Asymmetrically-Quantized bit-Slice GEMM (AQS-GEMM) for the first time. In contrast to the previous bit-slice computing, which only skips operations of zero slices, the AQS-GEMM compresses frequent nonzero slices, generated by asymmetric quantization, and skips their operations. To increase the slice-level sparsity of activations, we also introduce two algorithm-hardware co-optimization methods: a zero-point manipulation and a distribution-based bit-slicing. To support the proposed AQS-GEMM and optimizations at the hardware-level, we newly introduce a DNN accelerator, Panacea, which efficiently handles sparse/dense workloads of the tiled AQS-GEMM to increase data reuse and utilization. Panacea supports a specialized dataflow and run-length encoding to maximize data reuse and minimize external memory accesses, significantly improving its hardware efficiency. Our benchmark evaluations show Panacea outperforms existing DNN accelerators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube