Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 34 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Wander Through the Multimodal Landscape: Efficient Transfer Learning via Low-rank Sequence Multimodal Adapter (2412.08979v1)

Published 12 Dec 2024 in cs.LG and cs.CV

Abstract: Efficient transfer learning methods such as adapter-based methods have shown great success in unimodal models and vision-LLMs. However, existing methods have two main challenges in fine-tuning multimodal models. Firstly, they are designed for vision-language tasks and fail to extend to situations where there are more than two modalities. Secondly, they exhibit limited exploitation of interactions between modalities and lack efficiency. To address these issues, in this paper, we propose the loW-rank sequence multimodal adapter (Wander). We first use the outer product to fuse the information from different modalities in an element-wise way effectively. For efficiency, we use CP decomposition to factorize tensors into rank-one components and achieve substantial parameter reduction. Furthermore, we implement a token-level low-rank decomposition to extract more fine-grained features and sequence relationships between modalities. With these designs, Wander enables token-level interactions between sequences of different modalities in a parameter-efficient way. We conduct extensive experiments on datasets with different numbers of modalities, where Wander outperforms state-of-the-art efficient transfer learning methods consistently. The results fully demonstrate the effectiveness, efficiency and universality of Wander.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: