2000 character limit reached
Distinguishing Scams and Fraud with Ensemble Learning (2412.08680v1)
Published 11 Dec 2024 in cs.CR, cs.AI, cs.HC, and cs.LG
Abstract: Users increasingly query LLM-enabled web chatbots for help with scam defense. The Consumer Financial Protection Bureau's complaints database is a rich data source for evaluating LLM performance on user scam queries, but currently the corpus does not distinguish between scam and non-scam fraud. We developed an LLM ensemble approach to distinguishing scam and fraud CFPB complaints and describe initial findings regarding the strengths and weaknesses of LLMs in the scam defense context.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.