Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating LLM-based Approaches to Legal Citation Prediction: Domain-specific Pre-training, Fine-tuning, or RAG? A Benchmark and an Australian Law Case Study (2412.06272v2)

Published 9 Dec 2024 in cs.CL, cs.AI, and cs.IR

Abstract: LLMs have demonstrated strong potential across legal tasks, yet the problem of legal citation prediction remains under-explored. At its core, this task demands fine-grained contextual understanding and precise identification of relevant legislation or precedent. We introduce the AusLaw Citation Benchmark, a real-world dataset comprising 55k Australian legal instances and 18,677 unique citations which to the best of our knowledge is the first of its scale and scope. We then conduct a systematic benchmarking across a range of solutions: (i) standard prompting of both general and law-specialised LLMs, (ii) retrieval-only pipelines with both generic and domain-specific embeddings, (iii) supervised fine-tuning, and (iv) several hybrid strategies that combine LLMs with retrieval augmentation through query expansion, voting ensembles, or re-ranking. Results show that neither general nor law-specific LLMs suffice as stand-alone solutions, with performance near zero. Instruction tuning (of even a generic open-source LLM) on task-specific dataset is among the best performing solutions. We highlight that database granularity along with the type of embeddings play a critical role in retrieval-based approaches, with hybrid methods which utilise a trained re-ranker delivering the best results. Despite this, a performance gap of nearly 50% remains, underscoring the value of this challenging benchmark as a rigorous test-bed for future research in legal-domain.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.