Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotically Optimal Sampling-Based Path Planning Using Bidirectional Guidance Heuristic (2412.05754v1)

Published 7 Dec 2024 in cs.RO

Abstract: This paper introduces Bidirectional Guidance Informed Trees (BIGIT*),~a new asymptotically optimal sampling-based motion planning algorithm. Capitalizing on the strengths of \emph{meet-in-the-middle} property in bidirectional heuristic search with a new lazy strategy, and uniform-cost search, BIGIT* constructs an implicitly bidirectional preliminary motion tree on an implicit random geometric graph (RGG). This efficiently tightens the informed search region, serving as an admissible and accurate bidirectional guidance heuristic. This heuristic is subsequently utilized to guide a bidirectional heuristic search in finding a valid path on the given RGG. Experiments show that BIGIT* outperforms the existing informed sampling-based motion planners both in faster finding an initial solution and converging to the optimum on simulated abstract problems in $\mathbb{R}{16}$. Practical drone flight path planning tasks across a campus also verify our results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.