Papers
Topics
Authors
Recent
2000 character limit reached

Flash Communication: Reducing Tensor Parallelization Bottleneck for Fast Large Language Model Inference (2412.04964v2)

Published 6 Dec 2024 in cs.AI

Abstract: The ever-increasing sizes of LLMs necessitate distributed solutions for fast inference that exploit multi-dimensional parallelism, where computational loads are split across various accelerators such as GPU clusters. However, this approach often introduces significant communication overhead, especially on devices with limited bandwidth. In this paper, we introduce Flash Communication, a novel low-bit compression technique designed to alleviate the tensor-parallelism communication bottleneck during inference. Our method substantially boosts intra-node communication speed by more than 3x and reduces the time-to-first-token by 2x, with nearly no sacrifice in model accuracy. Extensive experiments on various up-to-date LLMs demonstrate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.