Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cross-Self KV Cache Pruning for Efficient Vision-Language Inference (2412.04652v1)

Published 5 Dec 2024 in cs.CV and cs.AI

Abstract: KV cache pruning has emerged as a promising technique for reducing memory and computation costs in long-context auto-regressive generation. Existing methods for vision-LLMs (VLMs) typically rely on self-attention scores from LLMs to identify and prune irrelevant tokens. However, these approaches overlook the inherent distributional discrepancies between modalities, often leading to inaccurate token importance estimation and the over-pruning of critical visual tokens. To address this, we propose decomposing attention scores into intra-modality attention (within the same modality) and inter-modality attention (across modalities), enabling more precise KV cache pruning by independently managing these distinct attention types. Additionally, we introduce an n-softmax function to counteract distribution shifts caused by pruning, preserving the original smoothness of attention scores and ensuring stable performance. Our final training-free method, \textbf{C}ross-\textbf{S}elf \textbf{P}runing (CSP), achieves competitive performance compared to models with full KV caches while significantly outperforming previous pruning methods. Extensive evaluations on MileBench, a benchmark encompassing 29 multimodal datasets, demonstrate CSP's effectiveness, achieving up to a 41\% performance improvement on challenging tasks like conversational embodied dialogue while reducing the KV cache budget by 13.6\%. The code is available at https://github.com/TerryPei/CSP

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com