Papers
Topics
Authors
Recent
2000 character limit reached

Quantum algorithm for approximating the expected value of a random-exist quantified oracle

Published 30 Nov 2024 in quant-ph and cs.DS | (2412.00567v1)

Abstract: Quantum amplitude amplification and estimation have shown quadratic speedups to unstructured search and estimation tasks. We show that a coherent combination of these quantum algorithms also provides a quadratic speedup to calculating the expectation value of a random-exist quantified oracle. In this problem, Nature makes a decision randomly, i.e. chooses a bitstring according to some probability distribution, and a player has a chance to react by finding a complementary bitstring such that an black-box oracle evaluates to $1$ (or True). Our task is to approximate the probability that the player has a valid reaction to Nature's initial decision. We compare the quantum algorithm to the average-case performance of Monte-Carlo integration over brute-force search, which is, under reasonable assumptions, the best performing classical algorithm. We find the performance separation depends on some problem parameters, and show a regime where the canonical quadratic speedup exists.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.