Planning vs Reasoning: Ablations to Test Capabilities of LoRA layers (2412.00029v2)
Abstract: Low-Rank Adaptation (LoRA) layers have emerged as a promising approach for efficient model fine-tuning, but their capabilities and limitations have not been fully explored. This paper: 1) Investigates the fundamental question of whether LoRA layers are effective at increasing reasoning + planning abilities 2) We introduce HashChain Reasoning, a novel evaluation dataset that deterministically tests reasoning capabilities. Through systematic ablation studies on GPT-2, we demonstrate that reasoning capabilities appear to exist primarily in low-rank spaces and can be effectively enhanced using LoRA layers. The effective rank analysis of trained LoRA matrices reveals a 2-3x lower rank requirement for reasoning tasks compared to planning tasks, giving context on where LoRA layers would be effective. This also provides evidence for reasoning fundamentally preferring low-parameter spaces for generalization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.