Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Task Model Merging via Adaptive Weight Disentanglement (2411.18729v2)

Published 27 Nov 2024 in cs.LG, cs.CL, and cs.CV

Abstract: Model merging has recently gained attention as an economical and scalable approach to incorporate task-specific weights from various tasks into a unified multi-task model. For example, in Task Arithmetic (TA), adding the fine-tuned weights of different tasks can enhance the model's performance on those tasks, while subtracting them leads to task forgetting. Although TA is highly effective, interference among task still hampers the performance of the merged model. Existing methods for handling conflicts between task generally rely on empirical selection, resulting in suboptimal performance. In this paper, we introduce an Adaptive Weight Disentanglement method. We begin by theoretically proving that task vectors employed in model merging should be orthogonal to minimize interference among tasks. Guided by this insight, we initialize redundant vectors such that, when subtracted from the original task vectors, the resulting vectors exhibit increased orthogonality. Additionally, we impose an norm constraint on the redundant vectors to preserve the performance of the task-specific models. Experimental results demonstrate the effectiveness of our proposed technique: it successfully extracts redundant vectors, and after their subtraction, the task vectors not only retain robust performance but also achieve superior fusion outcomes. Our code is available at \href{https://github.com/FarisXiong/AWD.git}{https://github.com/FarisXiong/AWD.git}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com