Papers
Topics
Authors
Recent
2000 character limit reached

Push the Limit of Multi-modal Emotion Recognition by Prompting LLMs with Receptive-Field-Aware Attention Weighting (2411.17674v1)

Published 26 Nov 2024 in cs.CL

Abstract: Understanding the emotions in a dialogue usually requires external knowledge to accurately understand the contents. As the LLMs become more and more powerful, we do not want to settle on the limited ability of the pre-trained LLM. However, the LLMs either can only process text modality or are too expensive to process the multimedia information. We aim to utilize both the power of LLMs and the supplementary features from the multimedia modalities. In this paper, we present a framework, Lantern, that can improve the performance of a certain vanilla model by prompting LLMs with receptive-field-aware attention weighting. This framework trained a multi-task vanilla model to produce probabilities of emotion classes and dimension scores. These predictions are fed into the LLMs as references to adjust the predicted probabilities of each emotion class with its external knowledge and contextual understanding. We slice the dialogue into different receptive fields, and each sample is included in exactly t receptive fields. Finally, the predictions of LLMs are merged with a receptive-field-aware attention-driven weighting module. In the experiments, vanilla models CORECT and SDT are deployed in Lantern with GPT-4 or Llama-3.1-405B. The experiments in IEMOCAP with 4-way and 6-way settings demonstrated that the Lantern can significantly improve the performance of current vanilla models by up to 1.23% and 1.80%.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.