Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Contrastive Multi-graph Learning with Neighbor Hierarchical Sifting for Semi-supervised Text Classification (2411.16787v1)

Published 25 Nov 2024 in cs.CL and cs.IR

Abstract: Graph contrastive learning has been successfully applied in text classification due to its remarkable ability for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal preservation of the graph information, minimizing data loss and distortion. Then, we separately execute relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying correlations between nodes and edge features while harmonising the information fusion across graphs. Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews, 20 Newsgroups, and Ohsumed datasets achieved 95.86\%, 97.52\%, 87.43\%, and 70.65\%, which demonstrates competitive results in semi-supervised text classification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.