Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neighbor Contrastive Learning on Learnable Graph Augmentation (2301.01404v2)

Published 4 Jan 2023 in cs.SI

Abstract: Recent years, graph contrastive learning (GCL), which aims to learn representations from unlabeled graphs, has made great progress. However, the existing GCL methods mostly adopt human-designed graph augmentations, which are sensitive to various graph datasets. In addition, the contrastive losses originally developed in computer vision have been directly applied to graph data, where the neighboring nodes are regarded as negatives and consequently pushed far apart from the anchor. However, this is contradictory with the homophily assumption of networks that connected nodes often belong to the same class and should be close to each other. In this work, we propose an end-to-end automatic GCL method, named NCLA to apply neighbor contrastive learning on learnable graph augmentation. Several graph augmented views with adaptive topology are automatically learned by the multi-head graph attention mechanism, which can be compatible with various graph datasets without prior domain knowledge. In addition, a neighbor contrastive loss is devised to allow multiple positives per anchor by taking network topology as the supervised signals. Both augmentations and embeddings are learned end-to-end in the proposed NCLA. Extensive experiments on the benchmark datasets demonstrate that NCLA yields the state-of-the-art node classification performance on self-supervised GCL and even exceeds the supervised ones, when the labels are extremely limited. Our code is released at https://github.com/shenxiaocam/NCLA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiao Shen (49 papers)
  2. Dewang Sun (1 paper)
  3. Shirui Pan (198 papers)
  4. Xi Zhou (43 papers)
  5. Laurence T. Yang (16 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.