Low-Data Classification of Historical Music Manuscripts: A Few-Shot Learning Approach (2411.16408v1)
Abstract: In this paper, we explore the intersection of technology and cultural preservation by developing a self-supervised learning framework for the classification of musical symbols in historical manuscripts. Optical Music Recognition (OMR) plays a vital role in digitising and preserving musical heritage, but historical documents often lack the labelled data required by traditional methods. We overcome this challenge by training a neural-based feature extractor on unlabelled data, enabling effective classification with minimal samples. Key contributions include optimising crop preprocessing for a self-supervised Convolutional Neural Network and evaluating classification methods, including SVM, multilayer perceptrons, and prototypical networks. Our experiments yield an accuracy of 87.66\%, showcasing the potential of AI-driven methods to ensure the survival of historical music for future generations through advanced digital archiving techniques.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.