Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Music Recognition: State of the Art and Major Challenges (2006.07885v2)

Published 14 Jun 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Elona Shatri (9 papers)
  2. György Fazekas (47 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.