Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AutoProteinEngine: A Large Language Model Driven Agent Framework for Multimodal AutoML in Protein Engineering (2411.04440v1)

Published 7 Nov 2024 in q-bio.QM

Abstract: Protein engineering is important for biomedical applications, but conventional approaches are often inefficient and resource-intensive. While deep learning (DL) models have shown promise, their training or implementation into protein engineering remains challenging for biologists without specialized computational expertise. To address this gap, we propose AutoProteinEngine (AutoPE), an agent framework that leverages LLMs for multimodal automated machine learning (AutoML) for protein engineering. AutoPE innovatively allows biologists without DL backgrounds to interact with DL models using natural language, lowering the entry barrier for protein engineering tasks. Our AutoPE uniquely integrates LLMs with AutoML to handle model selection for both protein sequence and graph modalities, automatic hyperparameter optimization, and automated data retrieval from protein databases. We evaluated AutoPE through two real-world protein engineering tasks, demonstrating substantial performance improvements compared to traditional zero-shot and manual fine-tuning approaches. By bridging the gap between DL and biologists' domain expertise, AutoPE empowers researchers to leverage DL without extensive programming knowledge. Our code is available at https://github.com/tsynbio/AutoPE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: