Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fully Dynamic (Δ+1) Coloring Against Adaptive Adversaries (2411.04418v2)

Published 7 Nov 2024 in cs.DS

Abstract: Over the years, there has been extensive work on fully dynamic algorithms for classic graph problems that admit greedy solutions. Examples include $(\Delta+1)$ vertex coloring, maximal independent set, and maximal matching. For all three problems, there are randomized algorithms that maintain a valid solution after each edge insertion or deletion to the $n$-vertex graph by spending $\polylog n$ time, provided that the adversary is oblivious. However, none of these algorithms work against adaptive adversaries whose updates may depend on the output of the algorithm. In fact, even breaking the trivial bound of $O(n)$ against adaptive adversaries remains open for all three problems. For instance, in the case of $(\Delta+1)$ vertex coloring, the main challenge is that an adaptive adversary can keep inserting edges between vertices of the same color, necessitating a recoloring of one of the endpoints. The trivial algorithm would simply scan all neighbors of one endpoint to find a new available color (which always exists) in $O(n)$ time. In this paper, we break this linear barrier for the $(\Delta+1)$ vertex coloring problem. Our algorithm is randomized, and maintains a valid $(\Delta+1)$ vertex coloring after each edge update by spending $\widetilde{O}(n{8/9})$ time with high probability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube