$k$NN Attention Demystified: A Theoretical Exploration for Scalable Transformers (2411.04013v2)
Abstract: Despite their power, Transformers face challenges with long sequences due to the quadratic complexity of self-attention. To address this limitation, methods like $k$-Nearest-Neighbor ($k$NN) attention have been introduced [Roy, Saffar, Vaswani, Grangier, 2021] enabling each token to attend to only its $k$ closest tokens. While $k$NN attention has shown empirical success in making Transformers more efficient, its exact approximation guarantees have not been theoretically analyzed. In this work, we establish a theoretical framework for $k$NN attention, reformulating self-attention as expectations over softmax distributions and leveraging lazy Gumbel sampling [Mussmann, Levy, Ermon, 2017] with $k$NN indices for efficient approximation. Building on this framework, we also propose novel sub-quadratic algorithms that approximate self-attention gradients by leveraging efficient sampling techniques, such as Markov Chain-based estimation. Finally, we demonstrate the practical effectiveness of these algorithms through empirical experiments, showcasing their benefits in both training and inference.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.