Papers
Topics
Authors
Recent
2000 character limit reached

Sum-of-squares lower bounds for Non-Gaussian Component Analysis (2410.21426v1)

Published 28 Oct 2024 in cs.LG, cs.CC, cs.DM, and stat.ML

Abstract: Non-Gaussian Component Analysis (NGCA) is the statistical task of finding a non-Gaussian direction in a high-dimensional dataset. Specifically, given i.i.d.\ samples from a distribution $PA_{v}$ on $\mathbb{R}n$ that behaves like a known distribution $A$ in a hidden direction $v$ and like a standard Gaussian in the orthogonal complement, the goal is to approximate the hidden direction. The standard formulation posits that the first $k-1$ moments of $A$ match those of the standard Gaussian and the $k$-th moment differs. Under mild assumptions, this problem has sample complexity $O(n)$. On the other hand, all known efficient algorithms require $\Omega(n{k/2})$ samples. Prior work developed sharp Statistical Query and low-degree testing lower bounds suggesting an information-computation tradeoff for this problem. Here we study the complexity of NGCA in the Sum-of-Squares (SoS) framework. Our main contribution is the first super-constant degree SoS lower bound for NGCA. Specifically, we show that if the non-Gaussian distribution $A$ matches the first $(k-1)$ moments of $\mathcal{N}(0, 1)$ and satisfies other mild conditions, then with fewer than $n{(1 - \varepsilon)k/2}$ many samples from the normal distribution, with high probability, degree $(\log n){{1\over 2}-o_n(1)}$ SoS fails to refute the existence of such a direction $v$. Our result significantly strengthens prior work by establishing a super-polynomial information-computation tradeoff against a broader family of algorithms. As corollaries, we obtain SoS lower bounds for several problems in robust statistics and the learning of mixture models. Our SoS lower bound proof introduces a novel technique, that we believe may be of broader interest, and a number of refinements over existing methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.