Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Gaussian Component Analysis via Lattice Basis Reduction (2112.09104v1)

Published 16 Dec 2021 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Non-Gaussian Component Analysis (NGCA) is the following distribution learning problem: Given i.i.d. samples from a distribution on $\mathbb{R}d$ that is non-gaussian in a hidden direction $v$ and an independent standard Gaussian in the orthogonal directions, the goal is to approximate the hidden direction $v$. Prior work \cite{DKS17-sq} provided formal evidence for the existence of an information-computation tradeoff for NGCA under appropriate moment-matching conditions on the univariate non-gaussian distribution $A$. The latter result does not apply when the distribution $A$ is discrete. A natural question is whether information-computation tradeoffs persist in this setting. In this paper, we answer this question in the negative by obtaining a sample and computationally efficient algorithm for NGCA in the regime that $A$ is discrete or nearly discrete, in a well-defined technical sense. The key tool leveraged in our algorithm is the LLL method \cite{LLL82} for lattice basis reduction.

Citations (18)

Summary

We haven't generated a summary for this paper yet.