Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Foundation Model for Chemical Design and Property Prediction (2410.21422v2)

Published 28 Oct 2024 in cs.CE

Abstract: AI has significantly advanced computational chemistry research in various tasks. However, traditional AI methods often rely on task-specific model designs and training, which constrain both the scalability of model size and generalization across different tasks. Here, we introduce ChemFM, a large foundation model specifically developed for chemicals. ChemFM comprises 3 billion parameters and is pre-trained on 178 million molecules using self-supervised causal language modeling to extract generalizable molecular representations. This model can be adapted to diverse downstream chemical applications using either full-parameter or parameter-efficient fine-tuning methods. ChemFM consistently outperforms state-of-the-art task-specific AI models across all tested tasks. Notably, it achieves up to 67.48% performance improvement across 34 property prediction benchmarks, up to 33.80% reduction in mean average deviation between conditioned and actual properties of generated molecules in conditional molecular generation tasks, and up to 3.7% top-1 accuracy improvement across 4 reaction prediction datasets. Moreover, ChemFM demonstrates its superior performance in predicting antibiotic activity and cytotoxicity, highlighting its potential to advance the discovery of novel antibiotics. We anticipate that ChemFM will significantly advance chemistry research by providing a foundation model capable of effectively generalizing across a broad range of tasks with minimal additional training.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: