Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training Compute-Optimal Vision Transformers for Brain Encoding (2410.19810v1)

Published 17 Oct 2024 in eess.IV, cs.CV, cs.LG, and q-bio.NC

Abstract: The optimal training of a vision transformer for brain encoding depends on three factors: model size, data size, and computational resources. This study investigates these three pillars, focusing on the effects of data scaling, model scaling, and high-performance computing on brain encoding results. Using VideoGPT to extract efficient spatiotemporal features from videos and training a Ridge model to predict brain activity based on these features, we conducted benchmark experiments with varying data sizes (10k, 100k, 1M, 6M) and different model configurations of GPT-2, including hidden layer dimensions, number of layers, and number of attention heads. We also evaluated the effects of training models with 32-bit vs 16-bit floating point representations. Our results demonstrate that increasing the hidden layer dimensions significantly improves brain encoding performance, as evidenced by higher Pearson correlation coefficients across all subjects. In contrast, the number of attention heads does not have a significant effect on the encoding results. Additionally, increasing the number of layers shows some improvement in brain encoding correlations, but the trend is not as consistent as that observed with hidden layer dimensions. The data scaling results show that larger training datasets lead to improved brain encoding performance, with the highest Pearson correlation coefficients observed for the largest dataset size (6M). These findings highlight that the effects of data scaling are more significant compared to model scaling in enhancing brain encoding performance. Furthermore, we explored the impact of floating-point precision by comparing 32-bit and 16-bit representations. Training with 16-bit precision yielded the same brain encoding accuracy as 32-bit, while reducing training time by 1.17 times, demonstrating its efficiency for high-performance computing tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube