Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Masked Autoencoder with Swin Transformer Network for Mitigating Electrode Shift in HD-EMG-based Gesture Recognition (2410.17261v1)

Published 7 Oct 2024 in eess.SP, cs.AI, and cs.LG

Abstract: Multi-channel surface Electromyography (sEMG), also referred to as high-density sEMG (HD-sEMG), plays a crucial role in improving gesture recognition performance for myoelectric control. Pattern recognition models developed based on HD-sEMG, however, are vulnerable to changing recording conditions (e.g., signal variability due to electrode shift). This has resulted in significant degradation in performance across subjects, and sessions. In this context, the paper proposes the Masked Autoencoder with Swin Transformer (MAST) framework, where training is performed on a masked subset of HDsEMG channels. A combination of four masking strategies, i.e., random block masking; temporal masking; sensor-wise random masking, and; multi-scale masking, is used to learn latent representations and increase robustness against electrode shift. The masked data is then passed through MAST's three-path encoder-decoder structure, leveraging a multi-path Swin-Unet architecture that simultaneously captures time-domain, frequency-domain, and magnitude-based features of the underlying HD-sEMG signal. These augmented inputs are then used in a self-supervised pre-training fashion to improve the model's generalization capabilities. Experimental results demonstrate the superior performance of the proposed MAST framework in comparison to its counterparts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube