Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Deep Learning Sequential Decoder for Transient High-Density Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer Learning

Published 23 Sep 2023 in eess.SP, cs.HC, cs.LG, and cs.RO | (2310.03752v1)

Abstract: Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computer interfaces that can interpret the deep spatiotemporal dynamics of biosignals from the peripheral nervous system, such as surface electromyography (sEMG). These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons. However, the natural variability of sEMG among individuals has led researchers to focus on subject-specific solutions. Deep learning methods, which often have complex structures, are particularly data-hungry and can be time-consuming to train, making them less practical for subject-specific applications. In this paper, we propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer learning, leveraging pre-knowledge of HGR acquired during pre-training. The use of transient HD-sEMG before gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays. The results show that the proposed generalized models significantly outperform subject-specific approaches, especially when the training data is limited, and there is a significant number of gesture classes. By building on pre-knowledge and incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average accuracy across partially observed subjects with minimal data availability. This work highlights the potential of HD-sEMG and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data for new users, enhancing practicality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.