Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparison of Image Preprocessing Techniques for Vehicle License Plate Recognition Using OCR: Performance and Accuracy Evaluation (2410.13622v1)

Published 15 Oct 2024 in cs.CV

Abstract: The growing use of Artificial Intelligence solutions has led to an explosion in image capture and its application in machine learning models. However, the lack of standardization in image quality generates inconsistencies in the results of these models. To mitigate this problem, Optical Character Recognition (OCR) is often used as a preprocessing technique, but it still faces challenges in scenarios with inadequate lighting, low resolution, and perspective distortions. This work aims to explore and evaluate various preprocessing techniques, such as grayscale conversion, CLAHE in RGB, and Bilateral Filter, applied to vehicle license plate recognition. Each technique is analyzed individually and in combination, using metrics such as accuracy, precision, recall, F1-score, ROC curve, AUC, and ANOVA, to identify the most effective method. The study uses a dataset of Brazilian vehicle license plates, widely used in OCR applications. The research provides a detailed analysis of best preprocessing practices, offering insights to optimize OCR performance in real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.