Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LEGAL-UQA: A Low-Resource Urdu-English Dataset for Legal Question Answering (2410.13013v1)

Published 16 Oct 2024 in cs.CL, cs.AI, and cs.LG

Abstract: We present LEGAL-UQA, the first Urdu legal question-answering dataset derived from Pakistan's constitution. This parallel English-Urdu dataset includes 619 question-answer pairs, each with corresponding legal article contexts, addressing the need for domain-specific NLP resources in low-resource languages. We describe the dataset creation process, including OCR extraction, manual refinement, and GPT-4-assisted translation and generation of QA pairs. Our experiments evaluate the latest generalist language and embedding models on LEGAL-UQA, with Claude-3.5-Sonnet achieving 99.19% human-evaluated accuracy. We fine-tune mt5-large-UQA-1.0, highlighting the challenges of adapting multilingual models to specialized domains. Additionally, we assess retrieval performance, finding OpenAI's text-embedding-3-large outperforms Mistral's mistral-embed. LEGAL-UQA bridges the gap between global NLP advancements and localized applications, particularly in constitutional law, and lays the foundation for improved legal information access in Pakistan.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.