ChatVTG: Video Temporal Grounding via Chat with Video Dialogue Large Language Models (2410.12813v1)
Abstract: Video Temporal Grounding (VTG) aims to ground specific segments within an untrimmed video corresponding to the given natural language query. Existing VTG methods largely depend on supervised learning and extensive annotated data, which is labor-intensive and prone to human biases. To address these challenges, we present ChatVTG, a novel approach that utilizes Video Dialogue LLMs for zero-shot video temporal grounding. Our ChatVTG leverages Video Dialogue LLMs to generate multi-granularity segment captions and matches these captions with the given query for coarse temporal grounding, circumventing the need for paired annotation data. Furthermore, to obtain more precise temporal grounding results, we employ moment refinement for fine-grained caption proposals. Extensive experiments on three mainstream VTG datasets, including Charades-STA, ActivityNet-Captions, and TACoS, demonstrate the effectiveness of ChatVTG. Our ChatVTG surpasses the performance of current zero-shot methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.