Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimizing and Evaluating Enterprise Retrieval-Augmented Generation (RAG): A Content Design Perspective (2410.12812v1)

Published 1 Oct 2024 in cs.IR and cs.AI

Abstract: Retrieval-augmented generation (RAG) is a popular technique for using LLMs to build customer-support, question-answering solutions. In this paper, we share our team's practical experience building and maintaining enterprise-scale RAG solutions that answer users' questions about our software based on product documentation. Our experience has not always matched the most common patterns in the RAG literature. This paper focuses on solution strategies that are modular and model-agnostic. For example, our experience over the past few years - using different search methods and LLMs, and many knowledge base collections - has been that simple changes to the way we create knowledge base content can have a huge impact on our RAG solutions' success. In this paper, we also discuss how we monitor and evaluate results. Common RAG benchmark evaluation techniques have not been useful for evaluating responses to novel user questions, so we have found a flexible, "human in the lead" approach is required.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 11 likes.