Papers
Topics
Authors
Recent
Search
2000 character limit reached

How to Make LLMs Forget: On Reversing In-Context Knowledge Edits

Published 16 Oct 2024 in cs.CL | (2410.12586v3)

Abstract: In-context knowledge editing (IKE) enables efficient modification of LLM outputs without parameter changes and at zero-cost. However, it can be misused to manipulate responses opaquely, e.g., insert misinformation or offensive content. Such malicious interventions could be incorporated into high-level wrapped APIs where the final input prompt is not shown to end-users. To address this issue, we investigate the detection and reversal of IKE-edits. First, we demonstrate that IKE-edits can be detected with high accuracy (F1 > 80\%) using only the top-10 output probabilities of the next token, even in a black-box setting, e.g. proprietary LLMs with limited output information. Further, we introduce the novel task of reversing IKE-edits using specially tuned reversal tokens. We explore using both continuous and discrete reversal tokens, achieving over 80\% accuracy in recovering original, unedited outputs across multiple LLMs. Our continuous reversal tokens prove particularly effective, with minimal impact on unedited prompts. Through analysis of output distributions, attention patterns, and token rankings, we provide insights into IKE's effects on LLMs and how reversal tokens mitigate them. This work represents a significant step towards enhancing LLM resilience against potential misuse of in-context editing, improving their transparency and trustworthiness.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.