Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Nonlinear Gaussian process tomography with imposed non-negativity constraints on physical quantities for plasma diagnostics (2410.11454v1)

Published 15 Oct 2024 in physics.plasm-ph and cs.LG

Abstract: We propose a novel tomographic method, nonlinear Gaussian process tomography (nonlinear GPT) that employs the Laplace approximation to ensure the non-negative physical quantity, such as the emissivity of plasma optical diagnostics. This new method implements a logarithmic Gaussian process (log-GP) to model plasma distribution more naturally, thereby expanding the limitations of standard GPT, which are restricted to linear problems and may yield non-physical negative values. The effectiveness of the proposed log-GP tomography is demonstrated through a case study using the Ring Trap 1 (RT-1) device, where log-GPT outperforms existing methods, standard GPT, and the Minimum Fisher Information (MFI) methods in terms of reconstruction accuracy. The result highlights the effectiveness of nonlinear GPT for imposing physical constraints in applications to an inverse problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.