Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep learning for Gaussian process tomography model selection using the ASDEX Upgrade SXR system (2004.06429v1)

Published 14 Apr 2020 in physics.data-an and eess.IV

Abstract: Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in a tokamak, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform model selection -- i.e., comparing different models and choosing the one with maximum evidence. However, the computations involved in this particular step may become slow for data with high dimensionality, especially when comparing the evidence for many different models. Using measurements collected by the ASDEX Upgrade Soft X-ray (SXR) diagnostic, we train a convolutional neural network (CNN) to map SXR tomographic projections to the corresponding GPT model whose evidence is highest. We then compare the network's results, and the time required to calculate them, with those obtained through analytical Bayesian formalism. In addition, we use the network's classifications to produce tomographic reconstructions of the plasma emissivity profile, whose quality we evaluate by comparing their projection into measurement space with the existing measurements themselves.

Citations (1)

Summary

We haven't generated a summary for this paper yet.