Papers
Topics
Authors
Recent
2000 character limit reached

Improving Bias in Facial Attribute Classification: A Combined Impact of KL Divergence induced Loss Function and Dual Attention (2410.11176v1)

Published 15 Oct 2024 in cs.CV and cs.AI

Abstract: Ensuring that AI-based facial recognition systems produce fair predictions and work equally well across all demographic groups is crucial. Earlier systems often exhibited demographic bias, particularly in gender and racial classification, with lower accuracy for women and individuals with darker skin tones. To tackle this issue and promote fairness in facial recognition, researchers have introduced several bias-mitigation techniques for gender classification and related algorithms. However, many challenges remain, such as data diversity, balancing fairness with accuracy, disparity, and bias measurement. This paper presents a method using a dual attention mechanism with a pre-trained Inception-ResNet V1 model, enhanced by KL-divergence regularization and a cross-entropy loss function. This approach reduces bias while improving accuracy and computational efficiency through transfer learning. The experimental results show significant improvements in both fairness and classification accuracy, providing promising advances in addressing bias and enhancing the reliability of facial recognition systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.