Learning Interpretable Classifiers for PDDL Planning (2410.10011v1)
Abstract: We consider the problem of synthesizing interpretable models that recognize the behaviour of an agent compared to other agents, on a whole set of similar planning tasks expressed in PDDL. Our approach consists in learning logical formulas, from a small set of examples that show how an agent solved small planning instances. These formulas are expressed in a version of First-Order Temporal Logic (FTL) tailored to our planning formalism. Such formulas are human-readable, serve as (partial) descriptions of an agent's policy, and generalize to unseen instances. We show that learning such formulas is computationally intractable, as it is an NP-hard problem. As such, we propose to learn these behaviour classifiers through a topology-guided compilation to MaxSAT, which allows us to generate a wide range of different formulas. Experiments show that interesting and accurate formulas can be learned in reasonable time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.